Professor Wang Advances Photoacoustic Imaging Technology
02-25-20
Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed variants of photoacoustic imaging that can show organs moving in real time, develop three-dimensional (3-D) images of internal body parts, and even differentiate cancerous cells from healthy cells. Photoacoustic imaging, a technique for examining living materials through the use of laser light and ultrasonic sound waves, has many potential applications in medicine because of its ability to show everything from organs to blood vessels to tumors. Wang has now further advanced photoacoustic imaging technology with what he calls Photoacoustic Topography Through an Ergodic Relay (PATER), which aims to simplify the equipment required for imaging of this type. [Caltech story]
Tags:
EE
research highlights
MedE
KNI
Lihong Wang
Ultrasound Can Selectively Kill Cancer Cells
02-05-20
Michael Ortiz, Frank and Ora Lee Marble Professor of Aeronautics and Mechanical Engineering, Emeritus, and Morteza Gharib, Hans W. Liepmann Professor of Aeronautics and Bioinspired Engineering; Booth-Kresa Leadership Chair, Center for Autonomous Systems and Technologies; Director, Graduate Aerospace Laboratories; Director, Center for Autonomous Systems and Technologies, are exploring a new technique that could offer a targeted approach to fighting cancer. Low-intensity pulses of ultrasound have been shown to selectively kill cancer cells while leaving normal cells unharmed. In the past, ultrasound waves have been used as a cancer treatment with high-intensity bursts resulting in killing cancer and normal cells. [Caltech story]
Tags:
APhMS
research highlights
GALCIT
MedE
MCE
Morteza Gharib
Michael Ortiz
Professor Wang Develops World's Fastest Camera
01-21-20
Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed the world's fastest camera, a device capable of taking 10 trillion pictures per second. It's so fast that it can even capture light traveling in slow motion. "What we've done is to adapt standard phase-contrast microscopy so that it provides very fast imaging, which allows us to image ultrafast phenomena in transparent materials," says Wang. [Caltech story]
Tags:
EE
research highlights
MedE
KNI
Lihong Wang
Wearable Sweat Sensor Detects Gout-Causing Compounds
11-25-19
In a new paper published in Nature Biotechnology, Wei Gao, Assistant Professor of Medical Engineering, describes a mass-producible wearable sensor that can monitor levels of metabolites and nutrients in a person's blood by analyzing their sweat. Gao's sweat sensor is more sensitive than current devices and can detect sweat compounds of much lower concentrations, in addition to being easier to manufacture. "Considering that abnormal circulating nutrients and metabolites are related to a number of health conditions, the information collected from such wearable sensors will be invaluable for both research and medical treatment," Gao says. [Caltech story] [Read the paper]
Tags:
research highlights
MedE
Wei Gao