News & Events

News Headlines

Noise-Canceling Optics

10-10-16

Changhuei Yang, Professor of Electrical Engineering, Bioengineering, and Medical Engineering, and colleagues have created the visual analogue of noise-canceling headphones—a camera system that can obtain images of objects obscured by murky media, such as fog or clouds, by canceling out the glare. Their device selectively cancels the scattered light, leaving only the light that is reflected or bounced off the objects and has slipped back through the murk unmolested. [Caltech story]

Tags: EE research highlights Changhuei Yang MedE

Popping Microbubbles Help Focus Light Inside the Body

12-03-15

Changhuei Yang, Professor of Electrical Engineering, Bioengineering, and Medical Engineering, and his postdoctoral colleague Dr. Haowen Ruan have developed a novel technique called time-reversed ultrasound microbubble encoded (TRUME) that uses gas-filled microbubbles to focus light inside tissue. "Ultrasound and X-ray techniques can only detect cancer after it forms a mass," Yang says. "But with optical focusing, you could catch cancerous cells while they are undergoing biochemical changes but before they undergo morphological changes." [Caltech story]

Tags: EE Changhuei Yang MedE health research highlight

Student Research in Biomedical Optics Wins First Place

07-02-15

Electrical Engineering postdoctoral scholar Dr. Haowen Ruan and graduate student Mooseok Jang, who work with Professor Changhuei Yang, have won first place for Best Student Poster Presentation at the Engineering Conferences International (ECI) series entitled “Advances in Optics in Biotechnology, Medicine and Surgery XIV.” Their winning poster demonstrated research in biomedical optics, specifically a novel technique that focuses light inside biological tissue by time-reversing the light encoded through popping of a microbubble. The technique has the potential to enable one to “see” through biological bodies with light.

Tags: EE honors Changhuei Yang MedE research highlight Haowen Ruan Mooseok Jang

Pushing Microscopy Beyond Standard Limits

07-29-13

Changhuei Yang, Professor of Electrical Engineering and Bioengineering, and colleagues have shown how to make cost-effective, ultra-high-performance microscopes. The final images produced by their new system contain 100 times more information than those produced by conventional microscope platforms. And building upon a conventional microscope, their new system costs only about $200 to implement. This new method could have wide applications not only in digital pathology but also in everything from hematology to wafer inspection to forensic photography. [Caltech Release]

Tags: EE Changhuei Yang MedE health research highlight

Seeing Inside Tissue

06-26-12

Changhuei Yang, Professor of Electrical Engineering and Bioengineering, and colleagues Ying Min Wang and Benjamin Judkewitz have developed a new method to focus light inside biological tissue. "It enables the possibilities of doing incision-less surgery," says Professor Yang. "By generating a tight laser-focus spot deep in tissue, we can potentially use that as a laser scalpel that leaves the skin unharmed." [Caltech Press Release]

Tags: EE energy research highlights Changhuei Yang MedE health Ying Min Wang Benjamin Judkewitz

Changhuei Yang Develops "Microscope on a Chip"

07-28-08

Changhuei Yang, Assistant Professor of Electrical Engineering and Bioengineering, and colleagues have turned science fiction into reality with their development of a super-compact high-resolution microscope, small enough to fit on a finger tip. This "microscopic microscope" operates without lenses but has the magnifyingpower of a top-quality optical microscope, can be used in the field to analyze blood samples for malaria or check water supplies for giardia and other pathogens, and can be mass-produced for around $10. [Caltech Press Release]

Tags: EE research highlights Changhuei Yang MedE health

Changhuei Yang Invents New Technique That Makes Tissues Transparent

01-28-08

Changhuei Yang, Assistant Professor of Electrical Engineering and Bioengineering, and colleagues, have invented a new technique, turbidity suppression by optical phase conjugation (TSOPC), that counteracts the scattering of light and removes the distortion it creates in images, potentially allowing for light energy to be targeted to devices inside a human body. [Caltech Press Release]

Tags: EE energy Changhuei Yang MedE health