News & Events

News Headlines

Butterfly Wings Inspire Light-Manipulating Surface for Medical Implants



Professor Hyuck Choo along with postdoctoral researchers Radwanul Hasan Siddique, and graduate student Vinayak Narasimhan working in the Choo lab have developed a synthetic analogue for eye implants that makes them more effective and longer-lasting. The work was inspired by tiny nanostructures on transparent butterfly wings. The eye implant is shaped like a tiny drum, the width of a few strands of hair. When inserted into an eye, its surface flexes with increasing eye pressure, narrowing the depth of the cavity inside the drum. That depth can be measured by a handheld reader, giving a direct measurement of how much pressure the implant is under. [Caltech story]

Tags: EE research highlights MedE Hyuck Choo Radwanul Hasan Siddique Vinayak Narasimhan

Glowing Contact Lens Could Prevent A Leading Cause of Blindness


Hundreds of millions of people suffer from diabetes worldwide, putting them at risk for a creeping blindness, or diabetic retinopathy. Existing treatments, though effective, are painful and invasive, involving lasers and injections into the eyeball. Graduate student, Colin Cook working in Professor Yu-Chong Tai’s laboratory has invented a contact lens that when worn during sleep interrupts the process that destroys cells of the retina. He hopes his contact lenses will offer a solution that patients will be more willing to try because the effort involved is minimal, as are the side effects. [Caltech story]

Tags: research highlights MedE Yu-Chong Tai Colin Cook

Engineered Metasurfaces Replace Adhesive Tape in Specialized Microscope


The latest advance in a new type of optics aimed at improving microscopy started with a game of tennis three years ago between Mooseok Jang a graduate of Professor Changhuei Yang's lab and Yu Horie working with Professor Andrei Faraon. "The hope is that our work will prompt further interest in this area of optics and make this type of microscopy and its advantages feasible for practical, everyday use—not just as a proof of concept," says Josh Brake, a graduate student in Yang's lab who continues to work on the project with Faraon and Yang. [Caltech story]

Tags: EE research highlights Changhuei Yang MedE alumni Andrei Faraon Mooseok Jang APh Yu Horie Josh Brake

New Process Allows 3-D Printing of Nanoscale Metal Structures


Professor Julia Greer and graduate student Andrey Vyatskikh have created complex nanoscale metal structures using 3-D printing. The process, once scaled up, could be used in a wide variety of applications and opens the door to the creation of a new class of materials with unusual properties that are based on their internal structure. [Caltech story]

Tags: research highlights MedE MCE Julia Greer MatSci Andrey Vyatskikh

Engineers Create Stable Plasma Ring in Open Air


For the first time, Professor Morteza Gharib and colleagues have created a stable ring of plasma in open air using just a stream of water and a crystal plate. The team fired the water jet at surfaces of different textures and found that the smoother the surface, the clearer the structure of the plasma ring. The ring is stable, and as long as the water continues to flow, the ring maintains its shape and size. [Caltech story]

Tags: research highlights GALCIT MedE Morteza Gharib

Laser-Imaging Technology Brought into Focus


Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, and colleagues have improved a technique for taking three-dimensional (3-D) microscopic images of tissue, allowing them to see inside living creatures with greater precision than before. "This gives us the ability to look through opaque materials and see what's inside," Professor Wang says. "It's like an extension of the human eye, like Superman's X-ray vision."  [Caltech story]

Tags: EE research highlights MedE Lihong Wang

The Science of Sweat


Wei Gao, Assistant Professor of Medical Engineering, is interested in the future of personalized and precision medicine, and is engineering the next generation of wearable health monitors and nanomachines that could enable rapid and hyper-localized drug delivery and surgery. The sweatband health tracker he is developing is capable of studying health at a molecular level. By analyzing an individual’s sweat, the device can monitor dehydration levels as well as blood glucose levels in real time. [Caltech interview]

Tags: research highlights MedE Wei Gao

New Microchip Technology Could Be Used to Track Smart Pills


Azita Emami, Andrew and Peggy Cherng Professor of Electrical Engineering and Medical Engineering; Investigator, Heritage Medical Research Institute; and EAS Division Deputy Chair, along with her colleagues including Professor Mikhail Shapiro have developed microscale devices that relay their location in the body. "We wanted to make this chip very small with low power consumption, and that comes with a lot of engineering challenges," says Professor Emami. "We had to carefully balance the size of the device with how much power it consumes and how well its location can be pinpointed." [Caltech story]

Tags: EE research highlights MedE Azita Emami Mikhail Shapiro

Ultra-Thin Camera Creates Images Without Lenses


Professor Ali Hajimiri and colleagues have developed a new camera design that replaces the lenses with an ultra-thin optical phased array (OPA). The OPA does computationally what lenses do using large pieces of glass: it manipulates incoming light to capture an image. "Here, like most other things in life, timing is everything. With our new system, you can selectively look in a desired direction and at a very small part of the picture in front of you at any given time, by controlling the timing with femto-second—quadrillionth of a second—precision," says Professor Hajimiri. [Caltech story] [ENGenious silicon photonics feature]

Tags: EE research highlights MedE Ali Hajimiri

Cutting Down on Cancer Surgeries


Engineers at the Optical Imaging Laboratory led by Professor Lihong Wang have developed an imaging technology that could help surgeons removing breast cancer lumps confirm that they have cut out the entire tumor—reducing the need for additional surgeries. “What if we could get rid of the waiting? With 3D photoacoustic microscopy, we could analyze the tumor right in the operating room, and know immediately whether more tissue needs to be removed,” Professor Wang explains. [Caltech story]

Tags: EE research highlights MedE Lihong Wang